(April 8, 2019 at 9:56 pm)polymath257 Wrote: As a formalist in my mathematical philosophy, finitism is a possible way to do mathematics. But I find it incredibly limiting.
Here is the basic idea: only finite sets are allowed (actually, hereditarily finite sets). Nonetheless, it is possible to define what it means for a set to be a (Von Neuman) ordinal. For finite sets, this is equivalent to being a natural number. So finitists can talk about natural numbers and finite sets of natural numbers, but there is no way to talk about the set of *all* natural numbers.
So, it is possible to make statements along the line of 'every natural number has such-and-such a property' but you cannot talk about the *set* of natural numbers with some property unless that set is finite. And it is even possible to do mathematical induction, but it has to be done on properties of natural numbers, not *sets* of such.
So, it is possible to define what it means for a natural number to be a prime. It is also possible to show that for every (finite) set of primes, there is a prime that is not in that set. But once again, it is not possible for a finitist to talk about the *set* of prime numbers.
Well, I find this version of mathematics to be, well, very confining. I also find that finitism tends to require rather forced constructions because of its inability to talk about infinite sets.
Now, the circumlocutions and forced constructions seen in finite mathematics are also seen in 'infinitary' mathematics when talking about 'proper classes'. In a real sense, there is an analogy between 'infinite sets' in finitary mathematics and 'proper classes' in set theory: in both cases, we are talking about objects that are 'too big' for the axiom system to deal with. In both cases, there are extensions that allow for at least some discussion of these large objects.
So, it finitism in math worth it? I don't think so. But it is a choice of axiom system as much as anything else. And there are many axioms systems to choose from when you want to play that game.
(April 7, 2019 at 5:25 pm)Smaug Wrote: What I meant is that if we consider all sets to be fundamentally finite as finitists suggest then there's no need for such a term as cardinality. You can just explicitly specify the number of elements for any given set. And I still can't grasp the finitists' point of view, how they beat the "+1" arguement. For me such recursive definition automatically leads to the notion of infinity. Infinity makes perfect sense from practical point of view, too. In a non-rigorous approach it can be interpreted as a value which is out of scale.
Not quite. When every you do +1 to a finite set, you get another finite set. At no point do you ever construct the *set* of all natural numbers, for example, in finite math.
Standard set theory even has an axiom called the axiom of infinity, which *assumes* there is an infinite set. Without this, all the other axioms would still be consistent. This is why finitism is possible.
(April 7, 2019 at 1:49 pm)Smaug Wrote: Isn't it so that if we invoke the term 'cardinality' we imply that infinite sets exist? Saying that a set can be continued forever is basically saying it's infinite, isn't it?
For the first question, no. Cardinality can be defined perfectly well even when limited to finite sets. The same one-to-one correspondence definition works perfectly well.
The problem in the second question is that we can 'continue forever' but at no point is the set of, say, all natural numbers ever 'reached'.
(April 3, 2019 at 12:10 pm)Jehanne Wrote: I had hoped that Polymath would have responded here, but it appears that he is gone?
I took a short break. I'm back.
I'm curious- what sort of insights are gained by using finitist logic?
If you get to thinking you’re a person of some influence, try ordering somebody else’s dog around.