(March 17, 2018 at 9:00 am)Jörmungandr Wrote:Now watch him dismiss all that .(March 17, 2018 at 6:59 am)Banned Wrote: Yes there are a lot of objections to the creation story, but given the numerous changes in theories about the universe in only the last 180 years, there are a lot of things which we can't account for now, which may well be common knowledge in the future.
As a creationist, I don't know when the universe was created in relation to the age of the earth, but it was there before the earth was created. There are some people who say that the universe was created at the same time, but that can be shown to be false.
The Bible says that the stars were made on the 4th day, and the word for stars leans towards the meaning of planets, as written in the rest of the Torah.
One of the main objections to a young universe is the theory of light and how it reaches earth from distant objects, but there are things in the universe, similar to dark matter, which could slow the speed of light, so that what we think is really old may be a lot younger.
Another possibility is that when something is created, that it's reference of time may begin with it, so there may be no way knowing when the beginning of anything is, let alone the universe.
And the only reference anything has will be to itself.
Quote:Radioactive Dating of an Old Star
A very interesting paper by Cowan et al. (1997, ApJ, 480, 246) discusses the thorium abundance in an old halo star. Normally it is not possible to measure the abundance of radioactive isotopes in other stars because the lines are too weak. But in CS 22892-052 the thorium lines can be seen because the iron lines are very weak. The Th/Eu (Europium) ratio in this star is 0.219 compared to 0.369 in the Solar System now. Thorium decays with a half-life of 14.05 Gyr, so the Solar System formed with Th/Eu = 24.6/14.05*0.369 = 0.463. If CS 22892-052 formed with the same Th/Eu ratio it is then 15.2 +/- 3.5 Gyr old. It is actually probably slightly older because some of the thorium that would have gone into the Solar System decayed before the Sun formed, and this correction depends on the nucleosynthesis history of the Milky Way. Nonetheless, this is still an interesting measure of the age of the oldest stars that is independent of the main-sequence lifetime method.
A later paper by Cowan et al. (1999, ApJ, 521, 194) gives 15.6 +/- 4.6 Gyr for the age based on two stars: CS 22892-052 and HD 115444.
A another star, CS 31082-001, shows an age of 12.5 +/- 3 Gyr based on the decay of U-238 [Cayrel, et al. 2001, Nature, 409, 691-692]. Wanajo et al. refine the predicted U/Th production ratio and get 14.1 +/- 2.5 Gyr for the age of this star.
The Age of the Oldest Star Clusters
When stars are burning hydrogen to helium in their cores, they fall on a single curve in the luminosity-temperature plot known as the H-R diagram after its inventors, Hertzsprung and Russell. This track is known as the main sequence, since most stars are found there. Since the luminosity of a star varies like M3 or M4, the lifetime of a star on the main sequence varies like t=const*M/L=k/L0.7. Thus if you measure the luminosity of the most luminous star on the main sequence, you get an upper limit for the age of the cluster:
Age < k/L(MS_max)0.7
This is an upper limit because the absence of stars brighter than the observed L(MS_max) could be due to no stars being formed in the appropriate mass range. But for clusters with thousands of members, such a gap in the mass function is very unlikely, the age is equal to k/L(MS_max)0.7. Chaboyer, Demarque, Kernan and Krauss (1996, Science, 271, 957) apply this technique to globular clusters and find that the age of the Universe is greater than 12.07 Gyr with 95% confidence. They say the age is proportional to one over the luminosity of the RR Lyra stars which are used to determine the distances to globular clusters. Chaboyer (1997) gives a best estimate of 14.6 +/- 1.7 Gyr for the age of the globular clusters. But recent Hipparcos results show that the globular clusters are further away than previously thought, so their stars are more luminous. Gratton et al. give ages between 8.5 and 13.3 Gyr with 12.1 being most likely, while Reid gives ages between 11 and 13 Gyr, and Chaboyer et al. give 11.5 +/- 1.3 Gyr for the mean age of the oldest globular clusters.
The Age of the Oldest White Dwarfs
A white dwarf star is an object that is about as heavy as the Sun but only the radius of the Earth. The average density of a white dwarf is a million times denser than water. White dwarf stars form in the centers of red giant stars, but are not visible until the envelope of the red giant is ejected into space. When this happens the ultraviolet radiation from the very hot stellar core ionizes the gas and produces a planetary nebula. The envelope of the star continues to move away from the central core, and eventually the planetary nebula fades to invisibility, leaving just the very hot core which is now a white dwarf. White dwarf stars glow just from residual heat. The oldest white dwarfs will be the coldest and thus the faintest. By searching for faint white dwarfs, one can estimate the length of time the oldest white dwarfs have been cooling. Oswalt, Smith, Wood and Hintzen (1996, Nature, 382, 692) have done this and get an age of 9.5+1.1-0.8 Gyr for the disk of the Milky Way. They estimate an age of the Universe which is at least 2 Gyr older than the disk, so to > 11.5 Gyr.
Hansen et al. have used the HST to measure the ages of white dwarfs in the globular cluster M4, obtaining 12.7 +/- 0.7 Gyr. In 2004 Hansen et al. updated their analysis to give an age for M4 of 12.1 +/- 0.9 Gyr, which is very consistent with the age of globular clusters from the main sequence turnoff. Allowing allowing for the time between the Big Bang and the formation of globular clusters (and its uncertainty) implies an age for the Universe of 12.8 +/- 1.1 Gyr.
Age of the Universe
Seek strength, not to be greater than my brother, but to fight my greatest enemy -- myself.
Inuit Proverb
Inuit Proverb