(August 18, 2022 at 9:08 am)FlatAssembler Wrote: So, @bennyboy , I have tried to convert that huge if-else to switch-case. However, the simulator stopped working then. Can you figure out what is going on?Sorry, it's a bit too much for me to wade through. I like the improved appearance with `switch`-- it really makes the code a lot more comfortable to read. After googling more about `switch` vs `if/else if` I'm not 100% confident that this will make much of a differnece, if any, in the speed of your simulation.
Code:"use strict";
function simulateOneInstruction() {
try {
PC = PC %
4096; // If you are at the end of a program, and there is no "return"
// there, jump to the beginning of the program. I think that's
// how PicoBlaze behaves, though I haven't tried it.
if (breakpoints.includes(machineCode[PC].line)) {
alert("Reached breakpoint on the line #" + machineCode[PC].line + ".");
if (playing)
clearInterval(simulationThread);
playing = false;
document.getElementById("fastForwardButton").disabled = false;
document.getElementById("singleStepButton").disabled = false;
document.getElementById("UART_INPUT").disabled = false;
document.getElementById("playImage").style.display = "inline";
document.getElementById("pauseImage").style.display = "none";
}
document.getElementById("PC_label_" + formatAsAddress(PC)).innerHTML = "";
const currentDirective = parseInt(machineCode[PC].hex, 16);
// "bennyboy" from "atheistforums.org" thinks my program can be
// speeded up by using a switch-case instead of the large if-else (that a
// switch-case would compile into a more efficient assembly code), so it
// would be interesting to investigate whether that's true:
// https://atheistforums.org/thread-61911-post-2112817.html#pid2112817
let port, firstRegister, secondRegister, firstValue, secondValue, result,
value;
switch (currentDirective & 0xff000) {
// if ((currentDirective & 0xff000) === 0x00000) {
case 0x00000:
// LOAD register,register
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
registers[regbank][parseInt(machineCode[PC].hex[3], 16)];
PC++;
// } else if ((currentDirective & 0xff000) === 0x01000) {
break;
case 0x01000:
// LOAD register,constant
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
parseInt(machineCode[PC].hex.substr(3), 16);
PC++;
// } else if ((currentDirective & 0xff000) === 0x17000) {
break;
case 0x17000:
// STAR register,constant ;Storing a constant into an inactive register
registers[!regbank | 0 /*That is how you convert a boolean to an integer
in JavaScript.*/
][parseInt(machineCode[PC].hex[2], 16)] =
parseInt(machineCode[PC].hex.substr(3), 16);
PC++;
// } else if ((currentDirective & 0xff000) === 0x16000) {
break;
case 0x16000:
// STAR register,register ;Copying from an active register into an
// inactive one.
registers[!regbank | 0][parseInt(machineCode[PC].hex[2], 16)] =
registers[regbank][parseInt(machineCode[PC].hex[3], 16)];
PC++;
// } else if ((currentDirective & 0xff000) === 0x2e000) {
break;
case 0x2e000:
// STORE register,(register) ;Store the first register at the memory
// location where the second register points to.
memory[registers[regbank][parseInt(machineCode[PC].hex[3], 16)]] =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
document
.getElementById(
"memory_" +
formatAsByte(
registers[regbank][parseInt(machineCode[PC].hex[3], 16)]))
.innerHTML = formatAsByte(
registers[regbank][parseInt(machineCode[PC].hex[2], 16)]);
PC++;
// } else if ((currentDirective & 0xff000) === 0x2f000) {
break;
case 0x2f000:
// STORE register,memory_address ;Copy a register onto a memory address.
memory[parseInt(machineCode[PC].hex.substr(3), 16)] =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
document.getElementById("memory_" + machineCode[PC].hex.substr(3))
.innerHTML = formatAsByte(
registers[regbank][parseInt(machineCode[PC].hex[2], 16)]);
PC++;
// } else if ((currentDirective & 0xff000) === 0x0a000) {
break;
case 0x0a000:
// FETCH register,(register) ;Dereference the pointer in the second
// register.
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
memory[registers[regbank][parseInt(machineCode[PC].hex[3], 16)]];
PC++;
// } else if ((currentDirective & 0xff000) === 0x0b000) {
break;
case 0x0b000:
// FETCH register,memory_address ;Copy the value at memory_address to the
// register.
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
memory[parseInt(machineCode[PC].hex.substr(3), 16)];
PC++;
// } else if ((currentDirective & 0xff000) === 0x08000) {
break;
case 0x08000:
// INPUT register,(register) ;Read a byte from a port specified by a
// register.
/*const*/ port = registers[regbank][parseInt(machineCode[PC].hex[3], 16)];
if ((port === 2 || port === 3) && is_UART_enabled) {
if (port === 3) {
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
document.getElementById("UART_INPUT")
.value.charCodeAt(currentlyReadCharacterInUART);
currentlyReadCharacterInUART++;
} else
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
currentlyReadCharacterInUART <
document.getElementById("UART_INPUT").value.length
? 0b00001000 /*U_RX_D*/
: 0;
} else
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] = parseInt(
document
.getElementById("input_" +
formatAsByte(registers[regbank][parseInt(
machineCode[PC].hex[3], 16)]))
.value,
16);
PC++;
// } else if ((currentDirective & 0xff000) === 0x09000) {
break;
case 0x09000:
// INPUT register, port_number
/*const*/ port = parseInt(machineCode[PC].hex.substr(3), 16);
if ((port === 2 || port === 3) && is_UART_enabled) {
if (port === 3) {
// UART_RX_PORT
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
document.getElementById("UART_INPUT")
.value.charCodeAt(currentlyReadCharacterInUART);
currentlyReadCharacterInUART++;
} else if (port === 2)
// UART_STATUS_PORT
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] =
currentlyReadCharacterInUART <
document.getElementById("UART_INPUT").value.length
? 0b00001000 /*U_RX_D*/
: 0;
else {
alert(
"Internal simulator error: The simulator got into a forbidden state!");
stopSimulation();
}
} else
registers[regbank][parseInt(machineCode[PC].hex[2], 16)] = parseInt(
document.getElementById("input_" + machineCode[PC].hex.substr(3))
.value,
16);
PC++;
// } else if ((currentDirective & 0xff000) === 0x2c000) {
break;
case 0x2c000:
// OUTPUT register,(register) ;Output the result of the first register to
// the port specified by the second register.
/*const*/ port = registers[regbank][parseInt(machineCode[PC].hex[3], 16)];
/*const*/ value =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
if ((port === 3 || port === 4) && is_UART_enabled) {
if (port === 3)
// UART_TX_PORT
document.getElementById("UART_OUTPUT").innerText +=
String.fromCharCode(value);
else if (port === 4)
// UART_RESET_PORT
document.getElementById("UART_OUTPUT").innerText = "";
else {
alert(
"Internal simulator error: The simulator got into a forbidden state!");
stopSimulation();
}
} else
output[registers[regbank][parseInt(machineCode[PC].hex[3], 16)]] =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
displayOutput();
PC++;
// } else if ((currentDirective & 0xff000) === 0x2d000) {
break;
case 0x2d000:
// OUTPUT register, port_number
/*const*/ port = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ value =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
if ((port === 3 || port === 4) && is_UART_enabled) {
if (port === 3)
// UART_TX_PORT
document.getElementById("UART_OUTPUT").innerText +=
String.fromCharCode(value);
else if (port === 4)
// UART_RESET_PORT
document.getElementById("UART_OUTPUT").innerText = "";
else {
alert(
"Internal simulator error: The simulator got into a forbidden state!");
stopSimulation();
}
} else {
output[parseInt(machineCode[PC].hex.substr(3), 16)] =
registers[regbank][parseInt(machineCode[PC].hex[2], 16)];
displayOutput();
}
PC++;
// } else if ((currentDirective & 0xff000) === 0x2b000) {
break;
case 0x2b000:
// OUTPUTK constant, port_number
/*const*/ value = parseInt(machineCode[PC].hex.substr(2, 2), 16);
/*const*/ port = parseInt(machineCode[PC].hex[4], 16);
if ((port === 3 || port === 4) && is_UART_enabled) {
if (port === 3)
// UART_TX_PORT
document.getElementById("UART_OUTPUT").innerText +=
String.fromCharCode(value);
else if (port === 4)
// UART_RESET_PORT
document.getElementById("UART_OUTPUT").innerText = "";
else {
alert(
"Internal simulator error: The simulator got into a forbidden state!");
stopSimulation();
}
} else {
output[parseInt(machineCode[PC].hex[4], 16)] =
parseInt(machineCode[PC].hex.substr(2, 2), 16);
displayOutput();
}
PC++;
/* } else if (currentDirective === 0x37000) {
// REGBANK A
regbank = 0;
PC++;
} else if (currentDirective === 0x37001) {
// REGBANK B
regbank = 1;
PC++;
*/
break;
case 0x37000:
if (currentDirective % 2 === 0)
regbank = 0;
else
regbank = 1;
PC++;
// } else if ((currentDirective & 0xff000) === 0x22000) {
break;
case 0x22000:
// JUMP label
PC = parseInt(machineCode[PC].hex.substr(2), 16);
/* } else if (machineCode[PC].hex.substr(0, 2) === "14" &&
machineCode[PC].hex.substr(3) === "80") {
// HWBUILD register
flagC[regbank] =
1; // Have a better idea? We can't simulate all of what this
directive
// does, but we can simulate this part of it.
PC++;
*/
break;
case 0x14000:
if ((currentDirective & 0x000ff) === 0x00080) {
flagC[regbank] = 1;
}
PC++;
// } else if ((currentDirective & 0xff000) === 0x10000) {
break;
case 0x10000:
// ADD register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
if ((firstValue + secondValue) % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (firstValue + secondValue > 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] += secondValue;
PC++;
// } else if ((currentDirective & 0xff000) === 0x11000) {
break;
case 0x11000:
// ADD register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
if ((firstValue + secondValue) % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (firstValue + secondValue > 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] += secondValue;
PC++;
// } else if ((currentDirective & 0xff000) === 0x12000) {
break;
case 0x12000:
// ADDCY register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue + secondValue + flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result > 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x13000) {
break;
case 0x13000:
// ADDCY register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue + secondValue + flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result > 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x18000) {
break;
case 0x18000:
// SUB register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue - secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x19000) {
break;
case 0x19000:
// SUB register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue - secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1a000) {
break;
case 0x1a000:
// SUBCY register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue - secondValue - flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1b000) {
break;
case 0x1b000:
// SUBCY register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue - secondValue - flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x03000) {
break;
case 0x03000:
// AND register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue & secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x02000) {
break;
case 0x02000:
// AND register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue & secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x04000) {
break;
case 0x04000:
// OR register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue | secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x05000) {
break;
case 0x05000:
// OR register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue | secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x06000) {
break;
case 0x06000:
// XOR register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue ^ secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x07000) {
break;
case 0x07000:
// XOR register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue ^ secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
registers[regbank][firstRegister] = result;
PC++;
/* } else if ((currentDirective & 0xff000) === 0x0c000 ||
(currentDirective & 0xff000) === 0x0e000) {
*/
break;
case 0x0c000:
case 0x0e000:
// TEST register, register ;The same as "AND", but does not store the
// result (only the flags). I am not sure if there is a difference between
// "0c" and "0e", they appear to be the same.
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue & secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
/* } else if ((currentDirective & 0xff000) === 0x0d000 ||
(currentDirective & 0xff000) === 0x0f000) {*/
break;
case 0x0d000:
case 0x0f000:
// TEST register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue & secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result % 256 === 255)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1c000) {
break;
case 0x1c000:
// COMPARE register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue - secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1d000) {
break;
case 0x1d000:
// COMPARE register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue - secondValue;
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1e000) {
break;
case 0x1e000:
// COMPARECY register, register
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
/*const*/ result = firstValue - secondValue - flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x1f000) {
break;
case 0x1f000:
// COMPARECY register, constant
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = parseInt(machineCode[PC].hex.substr(3), 16);
/*const*/ result = firstValue - secondValue - flagC[regbank];
if (result % 256 === 0)
flagZ[regbank] = 1;
else
flagZ[regbank] = 0;
if (result < 0)
flagC[regbank] = 1;
else
flagC[regbank] = 0;
// registers[regbank][firstRegister] = result;
PC++;
// } else if ((currentDirective & 0xff000) === 0x14000) {
break;
case 0x14000:
// Bit-shifting operations...
/*const*/ registerIndex = parseInt(machineCode[PC].hex[2], 16);
/*let*/ registerValue = registers[regbank][registerIndex];
console.log("DEBUG: Shifting the bits in register s" +
registerIndex.toString(16));
const set_flags_after_shift_left = () => {
flagC[regbank] = (registerValue > 255) | 0;
flagZ[regbank] = (registerValue % 256 === 0) | 0;
};
const set_flags_before_shift_right = () => {
flagC[regbank] = registerValue % 2;
flagZ[regbank] = (Math.floor(registerValue / 2) === 0) | 0;
};
switch (machineCode[PC].hex.substr(3)) {
case "06": // SL0
registerValue <<= 1;
set_flags_after_shift_left();
break;
case "07": // SL1
registerValue = (registerValue << 1) + 1;
set_flags_after_shift_left();
break;
case "04": // SLX
registerValue = (registerValue << 1) + (registerValue % 2);
set_flags_after_shift_left();
break;
case "00": // SLA
registerValue = (registerValue << 1) + flagC[regbank];
set_flags_after_shift_left();
break;
case "02": // RL
registerValue = (registerValue << 1) + Math.floor(registerValue / 128);
set_flags_after_shift_left();
break;
case "0e": // SR0
set_flags_before_shift_right();
registerValue >>= 1;
break;
case "0f": // SR1
set_flags_before_shift_right();
registerValue = (registerValue >> 1) + 128;
break;
case "0a": // SRX
set_flags_before_shift_right();
registerValue =
(registerValue >> 1) + Math.floor(registerValue / 128) * 128;
break;
case "08": // SRA
const oldFlagC = flagC[regbank];
set_flags_before_shift_right();
registerValue = (registerValue >> 1) + oldFlagC;
break;
case "0c": // RR
set_flags_before_shift_right();
registerValue = (registerValue >> 1) + 128 * (registerValue % 2);
break;
default:
alert('The instruction "' + machineCode[PC].hex +
'", assembled from line #' + machineCode[PC].line +
", hasn't been implemented yet, sorry about that!");
}
registers[regbank][registerIndex] = registerValue;
PC++;
// } else if ((currentDirective & 0xff000) === 0x32000) {
break;
case 0x32000:
// JUMP Z, label
if (flagZ[regbank])
PC = parseInt(machineCode[PC].hex.substr(2), 16);
else
PC++;
// } else if ((currentDirective & 0xff000) === 0x36000) {
break;
case 0x36000:
// JUMP NZ, label
if (!flagZ[regbank])
PC = parseInt(machineCode[PC].hex.substr(2), 16);
else
PC++;
// } else if ((currentDirective & 0xff000) === 0x3a000) {
break;
case 0x3a000:
// JUMP C, label
if (flagC[regbank])
PC = parseInt(machineCode[PC].hex.substr(2), 16);
else
PC++;
// } else if ((currentDirective & 0xff000) === 0x3e000) {
break;
case 0x3e000:
// JUMP NC, label
if (!flagC[regbank])
PC = parseInt(machineCode[PC].hex.substr(2), 16);
else
PC++;
// } else if ((currentDirective & 0xff000) === 0x26000) {
break;
case 0x26000:
// JUMP@ (register, register) ; Jump to the address pointed by the
// registers (something like function pointers, except that "return" won't
// work).
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
PC = (firstValue % 16) * 256 + secondValue;
// } else if ((currentDirective & 0xff000) === 0x20000) {
break;
case 0x20000:
// CALL functionName
callStack.push(PC);
PC = parseInt(machineCode[PC].hex.substr(2), 16);
// } else if ((currentDirective & 0xff000) === 0x30000) {
break;
case 0x30000:
// CALL Z, functionName ; Call the function only if the Zero Flag is set.
if (flagZ[regbank]) {
callStack.push(PC);
PC = parseInt(machineCode[PC].hex.substr(2), 16);
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x34000) {
break;
case 0x34000:
// CALL NZ, functionName ; Call the function only if the Zero Flag is not
// set.
if (!flagZ[regbank]) {
callStack.push(PC);
PC = parseInt(machineCode[PC].hex.substr(2), 16);
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x38000) {
break;
case 0x38000:
// CALL C, functionName ; Call the function only if the Carry Flag is set.
if (flagC[regbank]) {
callStack.push(PC);
PC = parseInt(machineCode[PC].hex.substr(2), 16);
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x3c000) {
break;
case 0x3c000:
// CALL NC, functionName ; Call the function only if the Carry Flag is not
// set.
if (!flagC[regbank]) {
callStack.push(PC);
PC = parseInt(machineCode[PC].hex.substr(2), 16);
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x24000) {
break;
case 0x24000:
// CALL@ (register, register) ; Jump the function pointed by the function
// pointer stored in the registers.
/*const*/ firstRegister = parseInt(machineCode[PC].hex[2], 16);
/*const*/ secondRegister = parseInt(machineCode[PC].hex[3], 16);
/*const*/ firstValue = registers[regbank][firstRegister];
/*const*/ secondValue = registers[regbank][secondRegister];
callStack.push(PC);
PC = (firstValue % 16) * 256 + secondValue;
// } else if ((currentDirective & 0xff000) === 0x25000) {
break;
case 0x25000:
// RETURN
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
// } else if ((currentDirective & 0xff000) === 0x31000) {
break;
case 0x31000:
// RETURN Z ; Return from a function only if the Zero Flag is set.
if (flagZ[regbank]) {
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x35000) {
break;
case 0x35000:
// RETURN NZ ; Return from a function only if the Zero Flag is not set.
if (!flagZ[regbank]) {
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x39000) {
break;
case 0x39000:
// RETURN C ; Return from a function only if the Carry Flag is set.
if (flagC[regbank]) {
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x3d000) {
break;
case 0x3d000:
// RETURN NC ; Return from a function only if the Carry Flag is not set.
if (!flagC[regbank]) {
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
} else
PC++;
// } else if ((currentDirective & 0xff000) === 0x28000) {
break;
case 0x28000:
// INTERRUPT ENABLE|DISABLE
flagIE = machineCode[PC].hex[4] | 0;
PC++;
// } else if ((currentDirective & 0xff000) === 0x29000) {
break;
case 0x29000:
// RETURNI ENABLE|DISABLE
flagIE = machineCode[PC].hex[4] | 0;
if (callStack.length)
PC = callStack.pop() + 1;
else {
if (playing)
clearInterval(simulationThread);
alert("The program exited!");
}
// } else {
break;
default:
alert(
'Sorry about that, the simulator currently does not support the instruction "' +
machineCode[PC].hex + '" (' + currentDirective + " & " + 0xff000 +
" = " + (currentDirective & 0xff000) + "), assembled from line #" +
machineCode[PC].line + ".");
stopSimulation();
}
displayRegistersAndFlags();
document.getElementById("PC_label_" + formatAsAddress(PC)).innerHTML =
"->";
} catch (error) {
if (playing)
clearInterval(simulationThread);
alert("The simulator crashed! Error: " + error.message);
}
}
One thing I dislike about JavaScript is that if it encounters an error, it basically just aborts-- whereas C# will display the entire call stack, give detailed error messages, and so on. So you'll have to start writing debug messages to console, adding breakpoints, and so on, to find the fail point. (I admit thought that I don't know much about setting up a JS development environment, so maybe getting error messages is easy but I just don't know)