(May 23, 2015 at 7:15 pm)francismjenkins Wrote: I should elaborate a bit more. The TERT gene encodes for one of the proteins in the telomerase enzyme complex (telomerase has several subunits, an RNA subunit, TERC, a protein subunit, TERT, and dyskerin or DKC1). In the above mentioned research, a modified mRNA** that encodes for TERT was used to extend telomere. But the important difference is rather than completely restoring telomere, it only adds about 1,000 nucleotides (which increases replicative capacity by up to ~40 additional cell divisions), and then TERT meets the fate of most other proteins, proteolysis (degradation). So while this treatment can (in theory) be readministered, it doesn't create the sort of permanent change in cells that can lead to cancer formation (at least hypothetically).
**mRNA are "messenger" RNA (ribonucleic acid) involved in the translation of proteins, which work in cooperation with ribosomes.
I can still think of plenty of uses for it treatment wise. Such as staving off dementia in the elderly or as they mention in the article muscular dystrophy
To-morrow, and to-morrow, and to-morrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player,
That struts and frets his hour upon the stage,
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury,
Signifying nothing.
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player,
That struts and frets his hour upon the stage,
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury,
Signifying nothing.