RE: Interesting snippet on Tx resistent depression.
August 30, 2016 at 7:25 am
(This post was last modified: August 30, 2016 at 7:49 am by Arkilogue.)
You're right, If I could edit the "the" to "a" I would. And you are oversimplifying what I have provided medical evidence from multiple sources for. And to hell with actually doing it and experiencing the difference first hand right? No one's personal experiences are proof of anything. Carry on.
Obviously depression can be caused by a multitude of factors. And this is one that few would think of and is worsened by drugs!
Don't listen to me, LISTEN TO THEM!
http://www.nytimes.com/2015/06/28/magazi....html?_r=0
http://www.apa.org/monitor/2012/09/gut-feeling.aspx
That gut feeling
With a sophisticated neural network transmitting messages from trillions of bacteria, the brain in your gut exerts a powerful influence over the one in your head, new research suggests.
Gut bacteria also produce hundreds of neurochemicals that the brain uses to regulate basic physiological processes as well as mental processes such as learning, memory and mood. For example, gut bacteria manufacture about 95 percent of the body's supply of serotonin, which influences both mood and GI activity.
When you consider the gut's multifaceted ability to communicate with the brain, along with its crucial role in defending the body against the perils of the outside world, "it's almost unthinkable that the gut is not playing a critical role in mind states," says gastroenterologist Emeran Mayer, MD, director of the Center for Neurobiology of Stress at the University of California, Los Angeles.
Want to talk about affecting mood and brain function? HOW ABOUT AUTISM???
http://www.theatlantic.com/health/archiv...in/395918/
When Gut Bacteria Changes Brain Function
Some researchers believe that the microbiome may play a role in regulating how people think and feel.
“There’s been an explosion of interest in the connections between the microbiome and the brain,” says Emeran Mayer, a gastroenterologist at the University of California, Los Angeles, who has been studying the topic for the past five years.
Some of the most intriguing work has been done on autism. For decades, doctors, parents, and researchers have noted that about three-quarters of people with autism also have some gastrointestinal abnormality, like digestive issues, food allergies, or gluten sensitivity. This recognition led scientists to examine potential connections between gut microbes and autism; several recent studies have found that autistic people’s microbiome differs significantly from control groups. The California Institute of Technology microbiologist Sarkis Mazmanian has focused on a common species called Bacteroides fragilis, which is seen in smaller quantities in some children with autism. In a paper published two years ago in the journal Cell, Mazmanian and several colleagues fed B. fragilis from humans to mice with symptoms similar to autism. The treatment altered the makeup of the animals’ microbiome, and more importantly, improved their behavior: They became less anxious, communicated more with other mice, and showed less repetitive behavior.
Read the rest of this article its comprehensive and fascinating. Oh and all you yogurt fans in the thread, you know who you are...this is for you from the same article.
To Mayer’s surprise, the results, which were published in 2013 in the journal Gastroenterology, showed significant differences between the two groups; the yogurt eaters reacted more calmly to the images than the control group. “The contrast was clear,” says Mayer. “This was not what we expected, that eating a yogurt twice a day for a few weeks would do something to your brain.” He thinks the bacteria in the yogurt changed the makeup of the subjects’ gut microbes, and that this led to the production of compounds that modified brain chemistry.
Moar you say, you want moar??? HAVE MOAR!!!
http://www.huffingtonpost.com/2015/01/04...91014.html
Now, promising new research from neurobiologists at Oxford University offers some preliminary evidence of a connection between gut bacteria and mental health in humans.The researchers found that supplements designed to boost healthy bacteria in the gastrointestinal tract (“prebiotics”) may have an anti-anxiety effect insofar as they alter the way that people process emotional information.
While probiotics consist of strains of good bacteria, prebiotics are carbohydrates that act as nourishment for those bacteria. With more evidence that gut bacteria may exert some influence on brain function and mental health, probiotics and prebiotics are being studied for the potential alleviation of anxiety and depression symptoms.
The results of one of the tests revealed that subjects who had taken the prebiotic paid less attention to negative information and more attention to positive information, compared to the placebo group, suggesting that the prebiotic group had less anxiety when confronted with negative stimuli. This effect is similar to that which has been observed among individuals who have taken antidepressants or anti-anxiety medication.
The researchers also found that the subjects who took the prebiotics had lower levels of cortisol — a stress hormone which has been linked with anxiety and depression — in their saliva when they woke up in the morning.
While previous research has documented that altering gut bacteria has a similarly anxiety-reducing effect in mice, the new study is one of the first to examine this phenomenon in humans. As of now, research on humans is in its early stages. A study conducted last year at UCLA found that women who consumed probiotics through regularly eating yogurt exhibited altered brain function in both a resting state and when performing an emotion-recognition task.
“Time and time again, we hear from patients that they never felt depressed or anxious until they started experiencing problems with their gut,” Dr. Kirsten Tillisch, the study’s lead author, said in a statement. “Our study shows that the gut–brain connection is a two-way street.”
http://link.springer.com/article/10.1007...014-3810-0
Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers
http://newsroom.ucla.edu/releases/changi...ugh-245617
Changing gut bacteria through diet affects brain function, UCLA study shows
The researchers were surprised to find that the brain effects could be seen in many areas, including those involved in sensory processing and not merely those associated with emotion, Tillisch said.
The knowledge that signals are sent from the intestine to the brain and that they can be modulated by a dietary change is likely to lead to an expansion of research aimed at finding new strategies to prevent or treat digestive, mental and neurological disorders, said Dr. Emeran Mayer, a professor of medicine (digestive diseases), physiology and psychiatry at the David Geffen School of Medicine at UCLA and the study's senior author.
"There are studies showing that what we eat can alter the composition and products of the gut flora — in particular, that people with high-vegetable, fiber-based diets have a different composition of their microbiota, or gut environment, than people who eat the more typical Western diet that is high in fat and carbohydrates," Mayer said. "Now we know that this has an effect not only on the metabolism but also affects brain function."
The UCLA researchers are seeking to pinpoint particular chemicals produced by gut bacteria that may be triggering the signals to the brain. They also plan to study whether people with gastrointestinal symptoms such as bloating, abdominal pain and altered bowel movements have improvements in their digestive symptoms which correlate with changes in brain response.
Meanwhile, Mayer notes that other researchers are studying the potential benefits of certain probiotics in yogurts on mood symptoms such as anxiety. He said that other nutritional strategies may also be found to be beneficial.
By demonstrating the brain effects of probiotics, the study also raises the question of whether repeated courses of antibiotics can affect the brain, as some have speculated. Antibiotics are used extensively in neonatal intensive care units and in childhood respiratory tract infections, and such suppression of the normal microbiota may have long-term consequences on brain development.
Finally, as the complexity of the gut flora and its effect on the brain is better understood, researchers may find ways to manipulate the intestinal contents to treat chronic pain conditions or other brain related diseases, including, potentially, Parkinson's disease, Alzheimer's disease and autism.
Answers will be easier to come by in the near future as the declining cost of profiling a person's microbiota renders such tests more routine, Mayer said.
And finally
http://www.scientificamerican.com/articl...n-the-gut/
Mental Health May Depend on Creatures in the Gut
The microbiome may yield a new class of psychobiotics for the treatment of anxiety, depression and other mood disorders
Scientists are increasingly convinced that the vast assemblage of microfauna in our intestines may have a major impact on our state of mind. The gut-brain axis seems to be bidirectional—the brain acts on gastrointestinal and immune functions that help to shape the gut's microbial makeup, and gut microbes make neuroactive compounds, including neurotransmitters and metabolites that also act on the brain.These interactions could occur in various ways: microbial compounds communicate via the vagus nerve, which connects the brain and the digestive tract, and microbially derived metabolites interact with the immune system, which maintains its own communication with the brain.
Microbes may have their own evolutionary reasons for communicating with the brain. They need us to be social, says John Cryan, a neuroscientist at University College Cork in Ireland, so that they can spread through the human population. Cryan's research shows that when bred in sterile conditions, germ-free mice lacking in intestinal microbes also lack an ability to recognize other mice with whom they interact. In other studies, disruptions of the microbiome induced mice behavior that mimics human anxiety, depression and even autism. In some cases, scientists restored more normal behavior by treating their test subjects with certain strains of benign bacteria.Nearly all the data so far are limited to mice, but Cryan believes the findings provide fertile ground for developing analogous compounds, which he calls psychobiotics, for humans. “That dietary treatments could be used as either adjunct or sole therapy for mood disorders is not beyond the realm of possibility,” he says.
Personality shifts
Scientists use germ-free mice to study how the lack of a microbiome—or selective dosing with particular bacteria—alters behavior and brain function, “which is something we could never do in people,” Cryan says. Entire colonies of germ-free mice are bred and kept in isolation chambers, and the technicians who handle them wear full bodysuits, as if they were in a biohazard facility. As with all mice research, extrapolating results to humans is a big step. That is especially true with germ-free mice because their brains and immune systems are underdeveloped, and they tend to be more hyperactive and daring than normal mice.
A decade ago a research team led by Nobuyuki Sudo, now a professor of internal medicine at Kyushu University in Japan, restrained germ-free mice in a narrow tube for up to an hour and then measured their stress hormone output. The amounts detected in the germ-free animals were far higher than those measured in normal control mice exposed to the same restraint. These hormones are released by the hypothalamic-pituitary-adrenal axis, which in the germ-free mice was clearly dysfunctional. But more important, the scientists also found they could induce more normal hormonal responses simply by pretreating the animals with a single microbe: a bacterium called Bifidobacterium infantis. This finding showed for the first time that intestinal microbes could influence stress responses in the brain and hinted at the possibility of using probiotic treatments to affect brain function in beneficial ways. “It really got the field off the ground,” says Emeran Mayer, a gastroenterologist and director of the Center for Neurobiology of Stress at the University of California, Los Angeles.
Meanwhile a research team at McMaster University in Ontario led by microbiologist Premsyl Bercik and gastroenterologist Stephen Collins discovered that if they colonized the intestines of one strain of germ-free mice with bacteria taken from the intestines of another mouse strain, the recipient animals would take on aspects of the donor's personality. Naturally timid mice would become more exploratory, whereas more daring mice would become apprehensive and shy. These tendencies suggested that microbial interactions with the brain could induce anxiety and mood disorders.
Obviously depression can be caused by a multitude of factors. And this is one that few would think of and is worsened by drugs!
Don't listen to me, LISTEN TO THEM!
http://www.nytimes.com/2015/06/28/magazi....html?_r=0
http://www.apa.org/monitor/2012/09/gut-feeling.aspx
That gut feeling
With a sophisticated neural network transmitting messages from trillions of bacteria, the brain in your gut exerts a powerful influence over the one in your head, new research suggests.
Gut bacteria also produce hundreds of neurochemicals that the brain uses to regulate basic physiological processes as well as mental processes such as learning, memory and mood. For example, gut bacteria manufacture about 95 percent of the body's supply of serotonin, which influences both mood and GI activity.
When you consider the gut's multifaceted ability to communicate with the brain, along with its crucial role in defending the body against the perils of the outside world, "it's almost unthinkable that the gut is not playing a critical role in mind states," says gastroenterologist Emeran Mayer, MD, director of the Center for Neurobiology of Stress at the University of California, Los Angeles.
Want to talk about affecting mood and brain function? HOW ABOUT AUTISM???
http://www.theatlantic.com/health/archiv...in/395918/
When Gut Bacteria Changes Brain Function
Some researchers believe that the microbiome may play a role in regulating how people think and feel.
“There’s been an explosion of interest in the connections between the microbiome and the brain,” says Emeran Mayer, a gastroenterologist at the University of California, Los Angeles, who has been studying the topic for the past five years.
Some of the most intriguing work has been done on autism. For decades, doctors, parents, and researchers have noted that about three-quarters of people with autism also have some gastrointestinal abnormality, like digestive issues, food allergies, or gluten sensitivity. This recognition led scientists to examine potential connections between gut microbes and autism; several recent studies have found that autistic people’s microbiome differs significantly from control groups. The California Institute of Technology microbiologist Sarkis Mazmanian has focused on a common species called Bacteroides fragilis, which is seen in smaller quantities in some children with autism. In a paper published two years ago in the journal Cell, Mazmanian and several colleagues fed B. fragilis from humans to mice with symptoms similar to autism. The treatment altered the makeup of the animals’ microbiome, and more importantly, improved their behavior: They became less anxious, communicated more with other mice, and showed less repetitive behavior.
Read the rest of this article its comprehensive and fascinating. Oh and all you yogurt fans in the thread, you know who you are...this is for you from the same article.
To Mayer’s surprise, the results, which were published in 2013 in the journal Gastroenterology, showed significant differences between the two groups; the yogurt eaters reacted more calmly to the images than the control group. “The contrast was clear,” says Mayer. “This was not what we expected, that eating a yogurt twice a day for a few weeks would do something to your brain.” He thinks the bacteria in the yogurt changed the makeup of the subjects’ gut microbes, and that this led to the production of compounds that modified brain chemistry.
Moar you say, you want moar??? HAVE MOAR!!!
http://www.huffingtonpost.com/2015/01/04...91014.html
Now, promising new research from neurobiologists at Oxford University offers some preliminary evidence of a connection between gut bacteria and mental health in humans.The researchers found that supplements designed to boost healthy bacteria in the gastrointestinal tract (“prebiotics”) may have an anti-anxiety effect insofar as they alter the way that people process emotional information.
While probiotics consist of strains of good bacteria, prebiotics are carbohydrates that act as nourishment for those bacteria. With more evidence that gut bacteria may exert some influence on brain function and mental health, probiotics and prebiotics are being studied for the potential alleviation of anxiety and depression symptoms.
The results of one of the tests revealed that subjects who had taken the prebiotic paid less attention to negative information and more attention to positive information, compared to the placebo group, suggesting that the prebiotic group had less anxiety when confronted with negative stimuli. This effect is similar to that which has been observed among individuals who have taken antidepressants or anti-anxiety medication.
The researchers also found that the subjects who took the prebiotics had lower levels of cortisol — a stress hormone which has been linked with anxiety and depression — in their saliva when they woke up in the morning.
While previous research has documented that altering gut bacteria has a similarly anxiety-reducing effect in mice, the new study is one of the first to examine this phenomenon in humans. As of now, research on humans is in its early stages. A study conducted last year at UCLA found that women who consumed probiotics through regularly eating yogurt exhibited altered brain function in both a resting state and when performing an emotion-recognition task.
“Time and time again, we hear from patients that they never felt depressed or anxious until they started experiencing problems with their gut,” Dr. Kirsten Tillisch, the study’s lead author, said in a statement. “Our study shows that the gut–brain connection is a two-way street.”
http://link.springer.com/article/10.1007...014-3810-0
Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers
http://newsroom.ucla.edu/releases/changi...ugh-245617
Changing gut bacteria through diet affects brain function, UCLA study shows
The researchers were surprised to find that the brain effects could be seen in many areas, including those involved in sensory processing and not merely those associated with emotion, Tillisch said.
The knowledge that signals are sent from the intestine to the brain and that they can be modulated by a dietary change is likely to lead to an expansion of research aimed at finding new strategies to prevent or treat digestive, mental and neurological disorders, said Dr. Emeran Mayer, a professor of medicine (digestive diseases), physiology and psychiatry at the David Geffen School of Medicine at UCLA and the study's senior author.
"There are studies showing that what we eat can alter the composition and products of the gut flora — in particular, that people with high-vegetable, fiber-based diets have a different composition of their microbiota, or gut environment, than people who eat the more typical Western diet that is high in fat and carbohydrates," Mayer said. "Now we know that this has an effect not only on the metabolism but also affects brain function."
The UCLA researchers are seeking to pinpoint particular chemicals produced by gut bacteria that may be triggering the signals to the brain. They also plan to study whether people with gastrointestinal symptoms such as bloating, abdominal pain and altered bowel movements have improvements in their digestive symptoms which correlate with changes in brain response.
Meanwhile, Mayer notes that other researchers are studying the potential benefits of certain probiotics in yogurts on mood symptoms such as anxiety. He said that other nutritional strategies may also be found to be beneficial.
By demonstrating the brain effects of probiotics, the study also raises the question of whether repeated courses of antibiotics can affect the brain, as some have speculated. Antibiotics are used extensively in neonatal intensive care units and in childhood respiratory tract infections, and such suppression of the normal microbiota may have long-term consequences on brain development.
Finally, as the complexity of the gut flora and its effect on the brain is better understood, researchers may find ways to manipulate the intestinal contents to treat chronic pain conditions or other brain related diseases, including, potentially, Parkinson's disease, Alzheimer's disease and autism.
Answers will be easier to come by in the near future as the declining cost of profiling a person's microbiota renders such tests more routine, Mayer said.
And finally
http://www.scientificamerican.com/articl...n-the-gut/
Mental Health May Depend on Creatures in the Gut
The microbiome may yield a new class of psychobiotics for the treatment of anxiety, depression and other mood disorders
Scientists are increasingly convinced that the vast assemblage of microfauna in our intestines may have a major impact on our state of mind. The gut-brain axis seems to be bidirectional—the brain acts on gastrointestinal and immune functions that help to shape the gut's microbial makeup, and gut microbes make neuroactive compounds, including neurotransmitters and metabolites that also act on the brain.These interactions could occur in various ways: microbial compounds communicate via the vagus nerve, which connects the brain and the digestive tract, and microbially derived metabolites interact with the immune system, which maintains its own communication with the brain.
Microbes may have their own evolutionary reasons for communicating with the brain. They need us to be social, says John Cryan, a neuroscientist at University College Cork in Ireland, so that they can spread through the human population. Cryan's research shows that when bred in sterile conditions, germ-free mice lacking in intestinal microbes also lack an ability to recognize other mice with whom they interact. In other studies, disruptions of the microbiome induced mice behavior that mimics human anxiety, depression and even autism. In some cases, scientists restored more normal behavior by treating their test subjects with certain strains of benign bacteria.Nearly all the data so far are limited to mice, but Cryan believes the findings provide fertile ground for developing analogous compounds, which he calls psychobiotics, for humans. “That dietary treatments could be used as either adjunct or sole therapy for mood disorders is not beyond the realm of possibility,” he says.
Personality shifts
Scientists use germ-free mice to study how the lack of a microbiome—or selective dosing with particular bacteria—alters behavior and brain function, “which is something we could never do in people,” Cryan says. Entire colonies of germ-free mice are bred and kept in isolation chambers, and the technicians who handle them wear full bodysuits, as if they were in a biohazard facility. As with all mice research, extrapolating results to humans is a big step. That is especially true with germ-free mice because their brains and immune systems are underdeveloped, and they tend to be more hyperactive and daring than normal mice.
A decade ago a research team led by Nobuyuki Sudo, now a professor of internal medicine at Kyushu University in Japan, restrained germ-free mice in a narrow tube for up to an hour and then measured their stress hormone output. The amounts detected in the germ-free animals were far higher than those measured in normal control mice exposed to the same restraint. These hormones are released by the hypothalamic-pituitary-adrenal axis, which in the germ-free mice was clearly dysfunctional. But more important, the scientists also found they could induce more normal hormonal responses simply by pretreating the animals with a single microbe: a bacterium called Bifidobacterium infantis. This finding showed for the first time that intestinal microbes could influence stress responses in the brain and hinted at the possibility of using probiotic treatments to affect brain function in beneficial ways. “It really got the field off the ground,” says Emeran Mayer, a gastroenterologist and director of the Center for Neurobiology of Stress at the University of California, Los Angeles.
Meanwhile a research team at McMaster University in Ontario led by microbiologist Premsyl Bercik and gastroenterologist Stephen Collins discovered that if they colonized the intestines of one strain of germ-free mice with bacteria taken from the intestines of another mouse strain, the recipient animals would take on aspects of the donor's personality. Naturally timid mice would become more exploratory, whereas more daring mice would become apprehensive and shy. These tendencies suggested that microbial interactions with the brain could induce anxiety and mood disorders.
"Leave it to me to find a way to be,
Consider me a satellite forever orbiting,
I knew the rules but the rules did not know me, guaranteed." - Eddie Vedder
Consider me a satellite forever orbiting,
I knew the rules but the rules did not know me, guaranteed." - Eddie Vedder