Here's a nice little snip from the wiki page on the Higgs boson involving general real world uses for science:
"As yet, there are no known immediate technological benefits of finding the Higgs particle. However, observers in both media and science point out that when fundamental discoveries are made about our world, their practical uses can take decades to emerge, but are often world-changing when they do.[41][42][43] A common pattern for fundamental discoveries is for practical applications to follow later, once the discovery has been explored further, at which point they become the basis for social change and new technologies.
For example, in the first half of the 20th century it was not expected that quantum mechanics would make possible transistors and microchips, mobile phones and computers, lasers and M.R.I. scanners.[44] Radio waves were described by their co-discoverer in 1888 as "an interesting laboratory experiment" with "no useful purpose" whatsoever,[45] and are now used in innumerable ways (radar, weather prediction, medicine, television, wireless computing and emergency response), positrons are used in hospital tomography scans, and special and general relativity which explain black holes also enable satellite-based GPS and satellite navigation ("satnav").[44] Electric power generation and transmission, motors, and lighting, all stemmed from previous theoretical work on electricity and magnetism; air conditioning and refrigeration resulted from thermodynamics. It is impossible to predict how seemingly esoteric knowledge may affect society in the future.[41][43]"
That might give you a few ideas as to whether modern research into these types of things is 'worth it'
"As yet, there are no known immediate technological benefits of finding the Higgs particle. However, observers in both media and science point out that when fundamental discoveries are made about our world, their practical uses can take decades to emerge, but are often world-changing when they do.[41][42][43] A common pattern for fundamental discoveries is for practical applications to follow later, once the discovery has been explored further, at which point they become the basis for social change and new technologies.
For example, in the first half of the 20th century it was not expected that quantum mechanics would make possible transistors and microchips, mobile phones and computers, lasers and M.R.I. scanners.[44] Radio waves were described by their co-discoverer in 1888 as "an interesting laboratory experiment" with "no useful purpose" whatsoever,[45] and are now used in innumerable ways (radar, weather prediction, medicine, television, wireless computing and emergency response), positrons are used in hospital tomography scans, and special and general relativity which explain black holes also enable satellite-based GPS and satellite navigation ("satnav").[44] Electric power generation and transmission, motors, and lighting, all stemmed from previous theoretical work on electricity and magnetism; air conditioning and refrigeration resulted from thermodynamics. It is impossible to predict how seemingly esoteric knowledge may affect society in the future.[41][43]"
That might give you a few ideas as to whether modern research into these types of things is 'worth it'
