RE: Quantum Physics: Questions
July 23, 2014 at 11:15 pm
(This post was last modified: July 23, 2014 at 11:21 pm by logicalreason.)
No not the Millikan experiment. I am refering to this:
The experiments began a decade ago, when Yves Couder and colleagues at Paris Diderot University discovered that vibrating a silicon oil bath up and down at a particular frequency can induce a droplet to bounce along the surface. The droplet’s path, they found, was guided by the slanted contours of the liquid’s surface generated from the droplet’s own bounces — a mutual particle-wave interaction analogous to de Broglie’s pilot-wave concept.
http://www.wired.com/2014/06/the-new-quantum-reality/
In a groundbreaking experiment, the Paris researchers used the droplet setup to demonstrate single- and double-slit interference. They discovered that when a droplet bounces toward a pair of openings in a damlike barrier, it passes through only one slit or the other, while the pilot wave passes through both. Repeated trials show that the overlapping wavefronts of the pilot wave steer the droplets to certain places and never to locations in between — an apparent replication of the interference pattern in the quantum double-slit experiment that Feynman described as “impossible … to explain in any classical way.” And just as measuring the trajectories of particles seems to “collapse” their simultaneous realities, disturbing the pilot wave in the bouncing-droplet experiment destroys the interference pattern.
Droplets can also seem to “tunnel” through barriers, orbit each other in stable “bound states,” and exhibit properties analogous to quantum spin and electromagnetic attraction. When confined to circular areas called corrals, they form concentric rings analogous to the standing waves generated by electrons in quantum corrals. They even annihilate with subsurface bubbles, an effect reminiscent of the mutual destruction of matter and antimatter particles.
The experiments began a decade ago, when Yves Couder and colleagues at Paris Diderot University discovered that vibrating a silicon oil bath up and down at a particular frequency can induce a droplet to bounce along the surface. The droplet’s path, they found, was guided by the slanted contours of the liquid’s surface generated from the droplet’s own bounces — a mutual particle-wave interaction analogous to de Broglie’s pilot-wave concept.
http://www.wired.com/2014/06/the-new-quantum-reality/
In a groundbreaking experiment, the Paris researchers used the droplet setup to demonstrate single- and double-slit interference. They discovered that when a droplet bounces toward a pair of openings in a damlike barrier, it passes through only one slit or the other, while the pilot wave passes through both. Repeated trials show that the overlapping wavefronts of the pilot wave steer the droplets to certain places and never to locations in between — an apparent replication of the interference pattern in the quantum double-slit experiment that Feynman described as “impossible … to explain in any classical way.” And just as measuring the trajectories of particles seems to “collapse” their simultaneous realities, disturbing the pilot wave in the bouncing-droplet experiment destroys the interference pattern.
Droplets can also seem to “tunnel” through barriers, orbit each other in stable “bound states,” and exhibit properties analogous to quantum spin and electromagnetic attraction. When confined to circular areas called corrals, they form concentric rings analogous to the standing waves generated by electrons in quantum corrals. They even annihilate with subsurface bubbles, an effect reminiscent of the mutual destruction of matter and antimatter particles.